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We are express the fermion�s probability amplitude as a trace over spinor indices but using the spin instead of  the 
helicity thus retrieving in another way all results of the helicity formalism in simpler forms. Our spin formulation is 
however more appropriate to processes of transverse polarizations now of increasing popularity. The helicity formalism 
may do the work but only indirectly using redundant intermediary steps. On the other hand certain observables such as  
dipole moments electric or magnetic  are naturally expressed in terms of spin rather than  helicity The helicity formalism 
for its part, applies more to collision processes with specified helicities. But both formalisms have the advantage of 
making the amplitudes or even the squared amplitudes easily computable either analytically or symbolically, a 
consequence of the rewriting of the amplitudes as an overall trace over gamma matrices. 

 
1. Motivating the spin 

Amplitudes of processes involving fermions of spin one 
half are generally written as 

 ( , )... ..... ( ', )u k s X u k s'  (1) 
where ( , )u k s is the part of the wave function which 
describes the spin of a particle of energy momentum p  
and spin s  and where ellipses indicate other Dirac 
spinors. The probability for a given process to occur is 
the squared modulus of the amplitude. It is usually 
expressed as a trace over spinor indices by use of 
projectors 
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       The trace form of the probability is compact, 
Lorentz invariant and, in addition offers the possibility 
to handle several -matrices (several loops) using 
machine facilities. Several symbolic programs are made 
available for such symbolic computations. In the next 
section we will show that amplitudes similarly to 
probabilities are re-expressed as traces, and hence 
benefit from the same computational facilities as 
probabilities. This work has already been done within 
the helicity formalism [1]. Here we develop it within the 
spin formalism which is shown to be equivalent and 
also serves different purposes. One may ask the 
question why the spin, as the helicity did all. The 
helicity deals naturally with processes where the states 
are helicity states. States polarized in the direction ( , ) 
are also dealt with but in an indirect way, as such states 
are linear combination of states of definite helicity 
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        So treating general polarizations by the helicity 
formalism amounts to rewrite such polarizations in 

terms of helicity states according to (3) and this 
complicates the analysis. In the contrary the spin 
formalism treats such polarization directly as in (2). On 
the other hand, pure transverse polarizations 
(set  = /2 in (3) ) are no longer unwanted polariza-
tions since our launching of the transversity [2], in 1992 
showing the relevance of the concept in hadronic 
physics. Away from the transversality in hadron physics, 
where the formalism of spin is more appropriate, we just 
want to calculate this: The scattering amplitude from the 
transversely polarized state 
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of the electron-positron system to a final state f  
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       So if we use the helicity formalism for this process 
we should compute the expression above (5), which 
consists of four helicity amplitudes written as traces 
over gamma matrices of the form 

 ' '( )T Tr X  (6) 
       But the use of the spin formalism amounts to 
compute only one term of the form (2) which is compact 
and more tractable  

 ' (s sT Tr ( ', )ss k k X) (7) 
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with ( ', )ss k k the generalized spin projector. It is the 
aim of the present study to give the full expression 
for ( ', )ss k k  in order to deal with amplitudes of 
general polarizations (transverse polarization is a 
particular case) and to avoid computing various helicity 
amplitudes. A helicity approach to a process of general 
polarization is still more cumbersome if the final state is 
generally polarized. To cite just one example we take 
the scattering amplitude from the transversely polarized 
state of the electron-positron (or quark-antiquark) 
system to a final state of say two photons also polarized 
transversely. The helicity formalism necessitates 
computing the sixteen helicity amplitudes hhT with 

,h h the helicity of the photons. Even if some 
symmetries are present such as chirality or parity 
(usually absent in supersymmetic models) this will not 
reduce the number of helicity amplitudes notably. There 
is another issue which necessitates a treatment within 
the spin framework as it depends directly on the 
transverse spin, namely the convection current part of 
the quark dipole magnetic moment which can ultimately 
be written as (see section 3)  
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These considerations show definitely that the 

prejudice against the spin formalism as being an 
unessential formalism as compared to the helicity 
formalism has no raison d�être and this is sufficient  to 
motivate the present study.  
 

2. The probability amplitude as a trace 

Write the spinor amplitude as 
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The approach we follow to work out the expression 
for the projector  is to extract it from its primitive form 
at the rest frame (where it is relatively easy to compute) 
by performing a Lorentz boost. The form of the 
generalized density is (from now on we hide Dirac 
indices) 
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The operator ),( kk  flips the momentum from 
k to k  while ssN a matrix in the two dimensional 
space of solutions ( 1s  is twice the spin) is 
responsible for the spin flip making the passage from 
the state ),( sku  to the state ),( sku  computed in 
the rest frame The matrix  will be shown to have the 
explicit form  
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with 1
0

| |tanh ( )k
k

 and idem for ' . Further 

simplifications lead to the formula  
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3. Computing a given process within the 
formalism 

Let us compute the process  R Re e e e  of the 
creation of right-handed selectrons by electrons via 
exchange of photinos in the chiral case (photons, 
Z bosons and zino exchanges are not considered as this 
computation is just an illustration).The positron has 
momentum k along the z axis in the e e centre of 
mass and spin projection s along the transverse 
direction 1  while the electron has momentum 'k and 
spin s  along 1' opposite to 1 .(This is the natural  
polarization of the system in in the storage ring.) The 
momentum of the selectron is 0( , )p p p with 

(sin cos ,sin sin , cos )p p . We may replace 
the electron-positron system by the quark-antiquark 
system with transverse polarization inherited from the 
parent proton-antiproton system transversely polarized. 
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For the electron-photino vertex, we use that fixed by 
super-symmetry in the chiral case 

5(1 )2
2 Re ee , 

but before to compute the amplitude we have to include 
the anti- particle into the formalism  since so far we 
have  considered only the projector involving particles. 
To do so we adopt the convention that the anti-particle 
spinor is related to the particle spinor by the relation [3] 

 5( , ) ( , )v k u k  (13) 
Applying the relation (13) to the spinor

1
( , ) |u k s  we 

get 
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In what follows all quantities will be computed 

using the energy projectors k m   (suitable for the 
massless limit or high energy which we will adopt here).  

The amplitude computed at vanishing azimuthal 
angle is of the form  
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with 2( ' )t k p . The 5 term is vanishing as it is 

proportional to 1 2.( ' ) . 0p k p while the 
remaining term is 
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with 0R

p
p

the velocity of the selectron. This is a 

one-step computation in the spin formalism. To 
compute the same amplitude but in the helicity 
formalism as is commonly practiced so far, we have to 
compute four helicity amplitudes separately. The 

amplitude of the above process computed in the helicity 
formalism involves the helicity quantities 
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Computed in our convention, they lead to the 
expressions 
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The helicity amplitudes turn out to all vanish in the 
limit of vanishing electron mass, except the one 
associated to the right-handed electron which we write 
explicitly 
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The transversely polarized amplitude (16) is then 
recovered using the decomposition of the spin 
projector , ' ( , ) ( ', ')u k v k  with ,s   
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The transversely polarized amplitude is then according 
to (20) 
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4. The quark dipole magnetic moment 

By using the Gordon decomposition we divide the 
dipole magnetic moment expression into two terms: one 
is the convection current part and the other is the spin 
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part. As an application of our formalism we compute the 
convection part as it is the only part which involves the 
generalized spin density. The convection current part 
has the form 
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Note the natural occurrence of the transverse 
spin s  in the calculation of the convection current. If 
such current was computed in the helicity formalism we 
would have get a more complicated expression. This has 
to be compared with the lengthy computation of the 
same observable using the Dirac spinors [4]. 
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